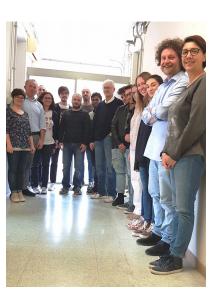
CLOUD Platform A Virtual Cluster


CNR – SCITEC

Giuseppe Vitillaro

Tecnologo

sysadm *thch.unipg.it*

Consiglio Nazionale delle Ricerche SCITEC Istituto Scienze e Tecnologie Chimiche UOS Perugia

SCITEC - Production Linux Clusters

SC SimpleCore: 12 nodes - 84 cores - 456Gb Memory - 7Tb Storage - Gbit

MC MultiCore: 36 nodes - 528 cores - 3664Gb Memory - 60Tb Storage - IB

24 nodes - 768 cores - 6144Gb Memory - 92Tb Storage - IB

TC ThchCore :

SC

MC

TC

http://www.clhyo.org/about-us/resources.html

Clusters – DCBB/CNR History

BW 8 nodes Intel Pentium Beowulf - 100Mbits cluster - RedHat (32bit) **RX** 6 nodes Intel Itanium Beowulf - Gbits cluster - RedHat 3 (64bit) **DC** 26 nodes Intel Pentium Cluster - Gbits cluster - RedHat 4 (64bit) **SC** 12 nodes Intel Xeon Cluster - Gbits cluster -RedHat 5 (64bit) MC 36 nodes Intel Xeon Cluster - 40Gbits (IB) cluster - CentOS 5 (64bit) **HS** 7 nodes Intel Xeon Clutster - Gbits Virtual cluster - SL 6 (64bit)

TC 24 nodes Intel Xeon Clutster - 40Gbits (IB) cluster - SL 6 (64bit)

Clusters built for Molecular Sciences HPC

- From the very beginning, after IBM RISC/6000 and IBM SP (XX century technologies), our beowulfs and clusters were built to run for days, weeks, months, intensive, parallel, Molecular Sciences HPC (High Performance Computing) applications
- The main goal was always that of building a reliable cluster of nodes which users may see as a single computing system, where jobs may be submitted, monitored and managed from a single access node
- Keeping in mind the complexity of computing systems should hide from the user eyes, usually a scientist which is mainly interested in running applications

Clusters – Single System Image

- Single access node, control workstation (CW)
 - hostname after the cluster id name
 - SCcw, MCcw, TCcw
- Single System image
 - user view achieved using "old technologies", simple, but still effective
 - Yellow Pages, aka NIS or NIS+ and NFS
 - It may easily scale up to hundred of nodes clusters
 - we are using this model, from the ninety, to build our clusters
- Node images built from the access node image
 - easy to build, to test and verify, after booting CW and a couple of nodes
 - generally small, ~2Gbytes -- node provisioning? a matter of minutes, at gigabit speed
 - images easy to be modified and replicated
 - as simple as doing a tar image
 - a process driven from simple shell scripts, easy to manage
 - nodes can be installed in parallel an hundred nodes cluster in hours
 - flexible enough to allow migration to new distros or distro versions
 - done, up to now, manually, with redhat-like distros
 - Ubuntu is a possible option, MAAS/juju *may* simplify provisioning

Clusters – System Image HPC toolbox

- **TORQUE**: Terascale Open-source Resource and *QUEue Manager*
 - extended from the original PBS (used in old beowulfs)
 - handle user job submission and resource allocation
 - easy to use, after some training, and well documented online
- MAUI Cluster Scheduler
 - effective Job Scheduler for High Performance clusters and supercomputing
 - capable of supporting multiple scheduling policies, dynamic priorities, reservations, and fairshare capabilitie

Clusters: User View

TORQUE: qstat

Job id	Name	User	Time Use S Queue
57228.sccw	sadlosshc.g09	marzio	0 Q q1
57229.sccw	sadlosscn.g09	marzio	0 Q q1
57232.sccw	symmblyp	gluca	0 Q q1

Imod modules

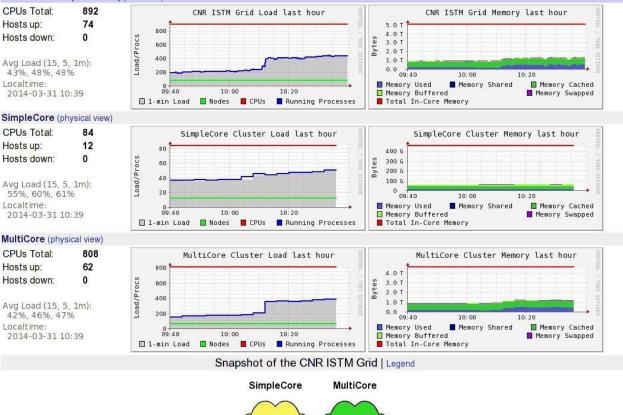
[peppe@hscw ~]\$ module list

Currently Loaded Modules: 1) intel/14.0.2 2) mvapich2/1.9 3) StdEnv

[peppe@hscw ~]\$ module avail

------ /usr/local/modulefiles/MPI/intel/14.0.2/mvapich2/1.9 espresso/39.62 gaussian/09-c01-omp nwchem/6.5.26243 gamess/050113R1 molpro/2010p-omp siesta/3.2-pl-4 ----- /usr/local/modulefiles/Compiler/intel/14.0.2 ----gotoblas2/1.13-omp mkl/11.1.2-omp (D) mkl8/11.1.2-omp mvapich2/1.9 gotoblas2/1.13 (D) mkl/11.1.2 mpich/3.1 scalapack/2.0 scalapack/2.0.2 ----- /usr/local/modulefiles/Core ------StdEnv gcc/sys intel/14.0.2 open64/5.0.0 ------ /usr/local/lmod/lmod/modulefiles/Core -----lmod/5.4.2 settarg/5.4.2 Where: (D): Default Module Use "module spider" to find all possible modules. Use "module keyword key1 key2 ..." to search for all possible modules matching any of the "kevs".

[peppe@hscw ~]\$


MAUI: showq

JOBNAME	USERNAME	STATE	PROC	REMAINING		STARTTIME
0 Active J		f 44 Proc f 7 Node		Active (0.0 ve (0.0		
IDLE JOBS						
JOBNAME	USERNAME	STATE	PROC	WCLIMIT		QUEUETIME
0 Idle Jobs						
BLOCKED JOBS						
JOBNAME	USERNAME	STATE	PROC	WCLIMIT		QUEUETIME
57228	marzio	BatchHold	1	99:23:59:59	Fri Auc	9 11:27:49
57229	marzio	BatchHold	1	99:23:59:59	Fri Aud	9 12:05:19
57232	gluca	BatchHold	1	20:08:00:00	Sun Aug	18 06:44:32
Total Jobs: 3	Active Jobs:	0 Idle J	obs: 6	Blocked J	lobs: 3	

The very same user view on any physical or virtual cluster

Clusters - Ganglia View

CNR ISTM Grid (2 sources) (tree view)

http://mccw.hpc.thch.unipg.it

05/09/2019 VHERLA

Herla Project

2014

2018

2019

- Joint project beween CNR-SCITEC and DCBB (UniPG)
 - harvest experience from previous clusters, on obsolete hardware back at work
 - a verified, from scientists, Application Framework for Molecular Sciences HPC
 - state of the art, at the time it has been built, Linux distro (Scientific Linux 6.x)
 - Imod modules choosed to semplify user access to compilers, libraries and applications https://lmod.readthedocs.io/en/latest
- Clusters had to to be easily configured for:
 - Ethernet, Gbits (GbE/10GbE), easy
 - Infiniband, IB (OFED), 40Gbits, complex
- Its images run today a couple of production clusters
 - HS CNR/DCBB virtual cluster hosted from GARR CLOUD

VHERLA

• TC - CNR SCITEC - production plysical IB cluster

Herla Clusters

2014

- **Chemgrid** (CG) for teaching
- **FrontEnd** (**FE**) for HPC
- LMOD modules Compilers and Libraries
- Intel C/Fortran compilers (14.0.2)
- Intel MKL (blas+lapack) (11.1.2)
- mpich 3.1 mvapich 1.9
- ScaLAPACK 2.0.2

Applications

- Espresso (39.62)
- Gaussian (09-c01)
- Gamess-US (050113R1)
- NwChem (6.5.26243)
- Siesta (3.2-pl-4)
- MolPro (2010p)

Links
Canglia Chemistry Department Grid Report
Limod documentation

http://cgcw.herla.unipg.it

Herla Project

Local Time Tue Feb 02, 2016 19:21:08

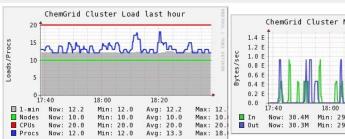
PBS-like Batch SubSystem

Torque Resource Manager (2.5.13) Maui Scheduler (3.3.4)

FEcw First Virtual Access node (VMWare) CG+FE – single NIS clusters – cgcw (master)

Herla Physical Clusters

CG ChemGrid : 10 nodes - 20 cores - 22Gb Memory - 2Tb Storage - Gbits (32bit)
 FE FrontEnd : 13 nodes - 52 cores - 52Gb Memory - 5Tb Storage - Gbits (64bit)

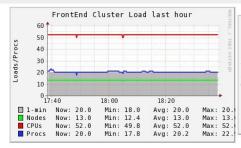

built

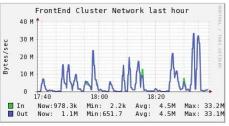
2016

 \bigcirc

ChemGrid (physical view) CPUs Total: 20 Hosts up: 10 Hosts down: 0

Current Load Avg (15, 5, 1m): 60%, 61%, 61% Avg Utilization (last hour): 61% Localtime: 2016-02-02 18:38





FrontEnd (physical view) CPUs Total: 52 Hosts up: 13 Hosts down: 0

Current Load Avg (15, 5, 1m): 38%, 38%, 38% Avg Utilization (last hour): 39% Localtime: 2016-02-02 18:38

2017

Herla cluster virtual images

- A first step towards the creation of a *cloud image*
 - done under CMS²

"Consortium for Computational Molecular and Materials Sciences" http://www.cms-2.org

- hosted by Department of Physics and Geology (UniPG) and INFN-PG OpenStack infrastructure http://www.fisica.unipg.it http://www.pg.infn.it http://openstack.fisica.unipg.it
- Herla application framework for Molecular Science HPC
- CW and node images
 - created from Herla physical clusters
 - QEMU images developed, and tested, on a single workstation
 - uing KVM and QEMU under Linux
 - almost complex, as usual, as deploying a tar image
- First succesfull application:
 - PhD School on Open Science Cloud (SOSC-2017)

http://fisgeo.unipg.it/sosc17 Perugia, June 5-9, 2017

Herla: First Virtual Cluster

• Built to run under OpenStack

• basically a *testbed*

2017

- its main goals: verification and benchmarking
- aim to become a production HPC system, eventually, one day
- still a long road to go

OpenStack Compute Nodes

- again, obsolete hardware at work (HP DL320 G5p)
- 15 new compute nodes, **vh01-15**, connected to the FisGEO/INFN running OpenStack
- a bunch of old nodes, performance were not an issue at this stage
- with a new dedicated virtual **HS**cw access node hscw.fisica.unipg.it
- loaded with the Herla cluster QEMU virtual images, hosting the HPC Application Framework

• OpenStack Backend Storage

- a small CEPH Storage Cluster, just four OSD/MON (Object Storage Daemon and Monitor) nodes
- to verify CEPH scalability, reliability and performance
- to harvest experience on this technology
- it had been a nice trip ;-)

https://ceph.io/ceph-storage

- CEPH choosed as a scalable OpenStack backend storage
 - installed in a very short time, using Ubuntu MAAS and juju
 - really effective for OpenStack admin

2017

r

- n.4 HP DL320 G5p, really obsolete nodes, as OSD/MON: [ce01,ce02,ce03,ce04]
- four SATA1 OSD at work, 1.5Tb storage online (90Mb/sec SATA max hw bandwidth)
- performance, as seen from *each* virtual node, around 50-70 Mb/sec, not too bad actually for such a small obsolete testbed configuration
- still running unattended, without any maintenance, after 2 years
- even with a broken OSD/MON, ce01 died some months ago ;-(, no data loss so far ;-)

Question

WHY virtual clusters?

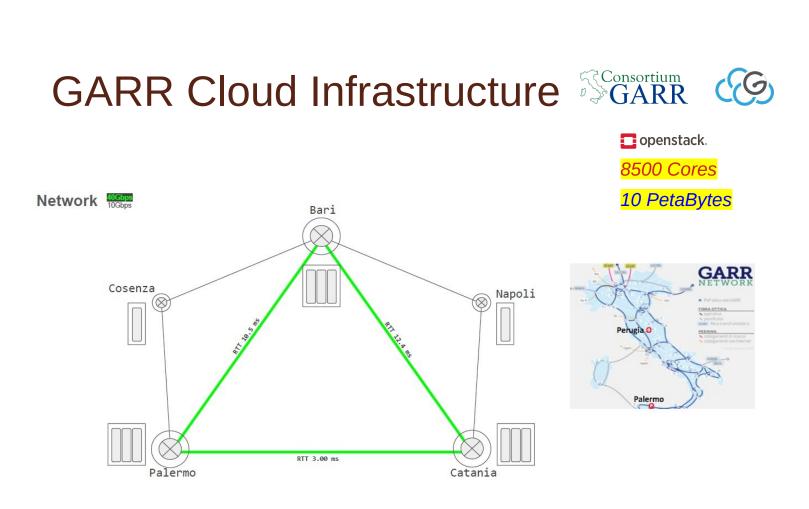
- You may ask now: "Why bothering about virtual clusters?"
 - they are easy to build, if application images are already available
 - *indipendent*, in some limit, from the underlying bare hardare
 - images can be uploaded on the cloud in a very short time, everywhere virtualization is offered
 - ranging from a local infrastructure, to academic services, to commercial services already offered *today* from vendors like Amazon, Google, IBM or even Microsoft
- Not a free lunch, as always is not
 - good performance for Molecular Sciences HPC are not easy to be achieved
 - especially for parallel MPI applications
 - not such simple and cheap to build a local specialized and realiable infrastructure
- My personal 2 cents opinion?
 - virtualization technologies will move from software to hardware
 - in a near future users will probably <u>require</u> to upload and download virtual clusters in and from cloud platforms
 - in the meanwhile, better to gain experience on these technologies
 - may already be effective for some application (benchmarking, ITC research, teaching)

Answer

openstack.

GARR Cloud

• GARR Cloud Platform https://cloud.garr.it

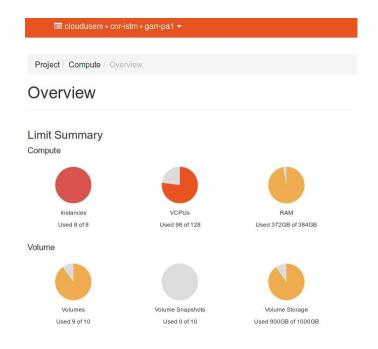

- GARR Cloud Platform offers cloud services to the Italian academic and research community (IaaS) Infrastructure as a Service – (DaaS) Deployment as a Service
- coordinates a federation of clouds
- · located in national datacenters owned by members of the GARR community,
- the GARR Cloud allows creating and managing Virtual Machines
- as deploying cloud applications, like a Virtual HPC Cluster

Virtual Machines

- GARR Cloud delivers virtual machines
- running in the data centers of the GARR Federated Cloud (eventually under OpenStack, over Ceph Storage clusters)
- connected through the GARR high speed fiber network

Virtual Datacenters

- a Virtual Datacenter consists of a set of virtual resources
- a set of resources (vCPUs, memory, storage, networking) assigned to an administrator
- admin can create users and enable them to use the resources assigned to a project


Tutorial on OpenStack and the GARR Federated Cloud A. Barchiesi, A. Colla, G. Marzulli Workshop GARR – Rome 2017 https://www.eventi.gari.ll/it/ws17/home/tutli-i-material/corso-openstack/132-presentazione-corso-openstack-a-barchiesi-g-marzull-a-colla

GARR Cloud: cnr-istm project

• GARR Cloud: project "cnr-istm" allocated for us

June 2018

- 8 instances, 128 vCPUs, 384Gb RAM, 1Tb virtual storage
- bare hardware resources allocated by GARR-CLOUD in *Palermo*
- GARR is also our Internet Service Provider, of course, connecting us to the Italian academic network
- so, we are nicely connected with the cnr-istm project resources

05/09/2019

VHERLA

GARR Consortium

Cnr-istm (now SCITEC) project

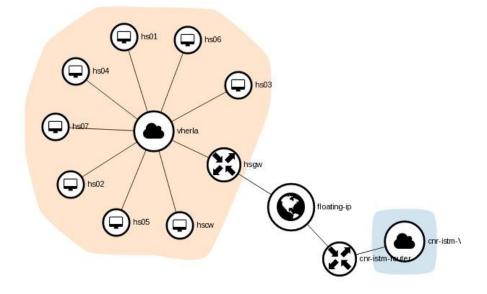
• A new Virtual Cluster

July 2018

- Herla 2017 virtual images ready for the GARR-CLOUD environment
- again, configured using KVM/QEMU, in a couple of days
- and uploaded to the GARR Cloud Academic National Platform
- very few changes, some minor glitch corrected

Instance Name	lmage Name	IP Address	Flavor	Key Pair	Status
hs07	-	192.168.100.115	m1.xlarge	peppe	Active
hs06	-	192.168.100.107	Not available	peppe	Active
hs05	-	192.168.100.114	m1.xxl	peppe	Active
hs04	-	192.168.100.110	m1.xxl	peppe	Active
hs03	-	192.168.100.112	m1.xxl	peppe	Active
hs02	2	192.168.100.103	m1.xxl	peppe	Active
hscw	~	192.168.100.109 Floating IPs: 90.147.189.20	m1.medium	peppe	Active
hs01		192.168.100.104	m1.xxl	peppe	Active

Virtual HERLA born


- HS Virtual Cluster: VHERLA
 - HScw: VHERLA cluster access node
 - 2 vCPUs, 4Gb RAM, 40Gb system volume + 100Gb user volume
 - n.7 compute nodes, 96 vCPUs (16x5+8x2), 368Gb (64x5+32+16) RAM, 512Gb scratch space

Torque Nodes

hs01	np=16	t100	x86_64	64Gb
hs02	np=16	t100	x86 64	64Gb
hs03	np=16	t100	x86_64	64Gb
hs04	np=16	t100	x86_64	64Gb
hs05	np=16	t100	x86_64	64Gb
hs06	np=8	t100	x86_64	32Gb
hs07	np=8	t100	x86_64	16Gb

Maui view

ACTIVE JOBS JOBNAME	USERNAME	STATE	PROC	REMAIN	NING
0 Active Jobs		96 Proc 7 Node			

VHERLA, an HPC Virtual Cluster

- VHERLA: a virtualized Molecular Science HPC Cluster
 - now running in the Cloud, the Virtual Datacenter provided by GARR
 - on state of the art physical bare processors Intel Xeon E3-12xx v2, 2.6Ghz cores
 - over a well performing gigabit network
 - protected by a firewall
 - SSH access to control workstation HScw, world-wide: "ssh hscw.herla.unipg.it"
 - WWW http server, offer "ganglia" interface http://hscw.herla.unipg.it
- Benchmarking
 - nice performances for *non parallel*, *production level*, HPC Applications
 - a cluster which may be easily replicated at any cloud service provider
 - which may be maintained remotely from virtual consoles
 - definitely a positive experience
 - it had been already succesfully used for real applications

• VHERLA Molecular Sciences HPC Application Framework passed base tests and had been benchmarked:

GARR

- QUANTUM ESPRESSO/39.62
- GAUSSIAN/09-c01-omp
- NWCHEMS/6.5.26243
- GAMESS-US/050113R1
- MOLPRO/2010p-omp
- SIESTA/3.2-pl-4
- Results?
 - applications has been *verified* by our research group scientists
 - performances, for *non parallel* MPI applications: quite good
 - the previous, first attempt, *Herla First Virtual Cluster*, just a *toy* compared with this new incarnation of the very same images
 - <u>general purpose</u> gigabit networking is simply not enough for real parallel MPI, production level applications, compared to our Infiniband (40Gbits) production physical clusters
 - can't be expected from a general purpose Cloud Service Provider!

VHERLA: applications

XIII-EM-TCCM

Virtual HERLA Facility

oint informal project between

University of Perugia INFN Perugia

Useful links

Activities 13/07/18 GARR Cloud resources allocation

Lmod: modules documentation

Torque: submitting jobs

° 15/07/18 - 31/07/18

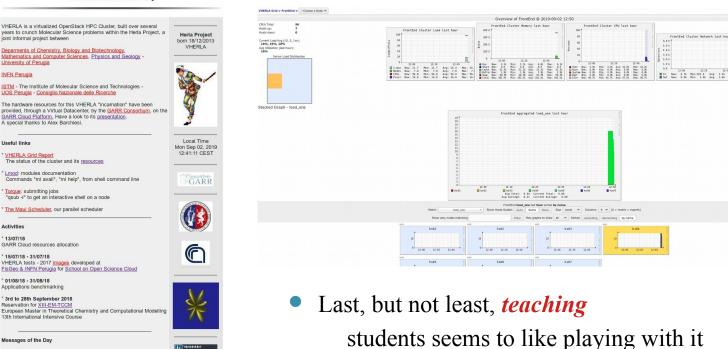
° 01/08/18 - 31/08/18 Applications benchmarking * 3rd to 28th September 2018

Messages of the Day ° 24/08/18

Reservation for XIII-EM-TCCM

13th International Intensive Course

Welcome to XIII-EM-TCCM teachers! Your accounts are ready.


Sept 2018

European Master in Theoretical Chemistry and Computational Modelling 0

13th International Intensive Course – Perugia, September 3-28, 2018

http://www-old.chm.unipg.it/chimgen/mb/theo2/TCCM2018/EM-TCCM2018/EM-TCCM/Welcome.html

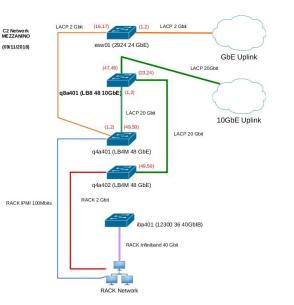
http://hscw.herla.unipg.it

A local (UniPG) cloud platform

• Quite satisfied of GARR-CLOUD VHERLA testbed

2018-2019

- we began to think about a local OpenStack Cloud specialized infrastructure
- wich may run other *future* virtual incarnations of VHERLA cluster
- built around our requests and constraints, for our applications
- designed to achieve the perfomance we need for HPC MPI parallel Molecular Science Applications, of the same order of our latest production level physical clusters
- to be, possibly, in a far future, federated with the National GARR-CLOUD academic service or with other local Perugia cloud platforms
- GbE networking is not enough for us, latency too high, bandwith too narrow
 - we used, once again, hardware we already own, not such obsolete, to build a new Infiniband cluster
 - which may host our experiments on OpenStack and CEPH storage technologies
 - moving from a GbE copper backbone to a 10GbE fiber backbone, to be able to distribute cloud services, at least in our Department, at full bandwidth
 - to allow to interconnect local UniPG clusters, in a near future



A glance to the future

RACK IBM C2 (MEZZ)

Switch 24 porte	GbE	esw01	1U
Switch 48 porte	10GbE	q8a401	1U
Switch 48 porte	GbE	q4a401	1U
Switch 48 porte	GbE	q4a402	1U
Switch 36 porte	40GbIB	iba401	1U
(tantalo)	IBM x346		2U
Console			10
R1 (vh01)			10
R2 (vh03)			1U
R3 (vh04)			1U
R4 (vh05)			1U
(mc15,mc16)	(→ D12)		1U
(mc23,mc24)	(→ D08)		1U
(mc25,mc26)	(→ D07)		1U
(mc29,mc30)	(→ D05)	IB broken	1U
(mc35,mc36)	(→ D02)		1U
(mc37,mc38)	(→ D01)		1U
(mc01,mc02)	(→ D19)		1U
(mc03,mc04)	(→ D18)	CEPH	1U
(mc05,mc06)	(→ D17)	CEPH	1U
(mc07,mc08)	(→ D16)	CEPH	1U
(mc11,mc12)	(→ D14)	CEPH	1U
(mc13,mc14)	(→ D13)	CEPH	1U
	iant DL380		2U

- August 2019: bare hardware installed
- still to be tested and verified
- connected to the *new* 10GbE fiber backbone
- enough resources to host OpenStack systems, a real CEPH 80Tb Storage Cluster and a bunch of OpenStack Compute Nodes, connected through Infiniband