

Massive Parallelism - The Hardware forComputational Chemistry?

Martyn F. Guest, CCLRC Daresbury Laboratory m.f.guest@daresbury.ac.uk

and

Giuseppe Vitillaro, University of Perugia peppe@unipg.it

Outline

- **Issues in HPC and Computational Chemistry**
	- **Background**
	- **Scalability, Distributed Data Structures and NUMA**
	- **"Grand Challenge" vs. Throughput requirements**
- **Grand Challenge Requirements**
	- **Distributed data structures and Global Arrays (GAs)**
	- **NWChem & the EMSL(Environmental Molecular Sciences Laboratory)**
- **Minimising time-to-solution and Throughput**
	- **GAMESS-UK; replicated data and GA's (limitations on current MPPs)**
	- **Direct-SCF, MP2 gradients and Density Functional Theory (DFT)**
- **Cost-effectiveness of MPPs:**
	- **Single-node performance**
	- **UNIX workstations vs. PC's (Pentium Pro)**
- **Integral bottleneck and O(N) developments**
	- **Multipole approximations and CMM**
- **Summary**

MPPs & Outstanding Problems in Computational Chemistry

- **•High latencies and low bandwidths**
- **•Availability of parallel linear algebra libraries**
- **• Availability of compilers which generate efficient code for linear algebra constructs**
- **•Poor stability and usability of new MPPs**
- **• Lack of standards, e.g., in message-passing and languages (MPI and HPF)**
- **• Exploiting continuing advances in computational chemistry and computer H/W and S/W**
- **Lack of scalable I/O**

MPP Technology

Scalable Parallel Algorithms

An algorithm is scalable if it is possible to maintain constant time to solution by using more processors for larger problems with an acceptable level of efficiency.

• Accustomed to cpu efficiency – $\varepsilon^{(P,N,...)}$ = $\frac{T(1,N,...)}{P \cdot T(P,N,...)}$

– Should consider all machine resources – memory, disk, ...

• **Only scalable algorithms are cost-effective**

- **E.g., distributed vs. replicated data**
- **500-1000 node MPP vs. 50 X 16-processor SMP**

fµν

D

Replicated Data SCF F Integrals **D D D D D D F F F F F F** Sum Loca Diag. Brdcst $+$ \sum \sum $C_{\lambda i}^{\dagger} C_{\sigma i}^{\dagger}$ i λσ $=$ h µν $\sum C_{\lambda i} C_{\sigma i}^* \Big[2(\mu \nu |\sigma \lambda) - (\mu \lambda |\sigma \nu) \Big]$ N/2 *fock matrix orbitalexpansion comm*
 expansion
 coefficients two-electron integrals **Hartree-Fock SCF Model** $\textsf{Wavefunction:} \quad \Psi = \stackrel{\frown}{A}\phi_{_{1}}\phi_{_{2}}\cdots \phi_{_{N}}$ Expansion of one-electron orbitals: $\left\| \psi_j \right\| = \sum_{\mu=1}^{\infty}$ Scales as \quad **n** - \quad **n** (with integral screening) Σ $\oint_{\mathbf{j}} = \sum_{\mu=1}^{\mathbf{n}} \chi_{\mu} C_{\mu}$ **3 n 4**

the success of the NWChem project and the wealth of functionality

coming on line.

ftp.pnl.gov/pub/permanent

Global Arrays

Physically distributed subblocks

Single logical data object

- One-sided asynchronous remote access
- Fast local access
- MIMD and data-parallel modes
- Logical array addressing topology independent
- BLAS and linear algebra functionality
- Layered over message passing primitives or shared-memory facilities

How GA Compares to Other Scalable Models

HF Scalability for In-core Calculations

- **(C6H4(CF3))2 324 function DZP basis**
- **Representative of many routine calculations at the limit of in-core capability**
- **Massive parallelism and in-core make this** *interactive*
- **Demonstrates that NWChem will fully exploit faster integrals**

Distributed Matrices & Linear Algebra - PeIGS

- **Standard & generalized dense real symmetric eigenproblems on parallel computers.**
- **Produces highly accurate and orthogonal eigenvectors, using repeated inverse iteration and reorthogonalization against unconverged iterates.**
- **Scalable data structures and algorithms: implemented using message passing, interface to global arrays**

Scalability (a) for the determination of all eigenpairs of a 2053 by 2053 matrix whose spectrum is displayed in (b).

Daresbury Laboratory

GAMESS-UK

GAMESS-UK is the general purpose ab initio molecular electronic structure program for performing SCF- and MCSCF-gradient calculations, together with a variety of techniques for post Hartree Fock calculations.

The program is derived from the original GAMESS code, obtained from Michel Dupuis in 1981 (then at the NRCC), and has been extensively modified and enhanced over the past decade.

This work has included contributions from numerous authors*, and has been conducted largely at the CCLRC Daresbury Laboratory, under the auspices of the UK's Collaborative Computational Project No. 1 (CCP1).

Other major sources that have assisted in the on-going development and support include academic funding agencies in the Netherlands, and ICI plc.

Current install base 100+ academic licences and 6 industrial sites.

*** M.F. Guest, J.H. van Lenthe, J. Kendrick, K. Schoeffel, P. Sherwood and R.J. Harrison, with contributions from R.D. Amos, R.J. Buenker, M. Dupuis, N.C. Handy, I.H. Hillier, P.J. Knowles, V. Bonacic-Koutecky, W. von Niessen, V.R. Saunders and A. Stone**

GAMESS-UK: Summary of Features

- **RHF, ROHF, GVB, UHF and MCSCF / CASSCF Wavefunctions**
- **Post Hartree-Fock Methods: MP2, MP3, MRDCI, CCSD(T), FULL-CI**
- **Methods for ionised (Green's Functions OVGF & TDA) and excited states (RPA, MCLR etc)**
- **ECP Calculations using both Non-Local and Local Pseudopotentials**
- **Analytic first and second derivatives for the determination of HF and MP2 force constants and geometry optimisations**
- **Molecular Properties: dipole, quadrupole and higher multipoles, polarisabilities, electrostatic potentials and electric field gradients etc.**
- **DFT Calculations (energies and gradients, coulomb fitting etc)**
- **Graphical Analysis of Molecular Orbitals and Properties (Cerius2 / SDK)**
- **Optimised for a variety of platforms including parallel architectures**

Available Hardware Platforms

Cray YMP-C90, J90 and T90

NEC SX-4, Fujitsu VPP300

IBM Power, Power2 and P2SC RS/6000-based models

Hewlett Packard 9000 Series Model 7xx, J200 and C160 (PA8000)

DEC (DEC Station 5000 series and Alpha AXP EV4 and EV5 family)

Silicon Graphics (Indigo2 R4400, R8000, R5000 & R10000 PC, Origin 2000)

Sun (SparcStation 10 and 20, HyperSPARC and Ultra-SPARC-1 and -2).

PARALLEL VERSIONS

SCF energies, 1st and 2nd derivatives, MP2 energies and gradients, and DFT.

are available for the CRAY T3D, T3E , IBM SP2, Intel iPSC/860 and workstation clusters .

New Platforms: Hitachi SR2201 (Pallas), NEC SX-4, Fujitsu VPP300

GAMESS-UK Software Developments

Software Development Tools .

- **Message Passing, Memory Allocation**
- **Global Arrays (PNNLToolkit & Visualizer)**
- **Distributed Matrices & Linear Algebra**

GAMESS-UK & Parallel Computational Chemistry .

- **-Common Application Components**
- **Self Consistent Field Hartree Fock + gradients**
- **SCF second derivatives**
- **Direct 4-Index Transformation**
- **Moller Plesset Perturbation Theory (MP2 gradients)**
- **CCSD(T)**
- **Density Functional Theory (DFT)**
- **Molecular Dynamics (DL_POLY)**
- **Combined QM /MM Theory (Chemsh)**

Interactive Molecular Modelling through Parallelism: IMMP

IMMP represented a 2 year project within the European Fine Chemicals Industry to:

Develop, exploit and integrate the power of Massively Parallel Processing (MPP) technology across a wide spectrum of industrial applications in Computational Chemistry

The IMMP consortium comprises a number of academic and industrial partners. Parallel program development involves 3 major chemistry application codes judged to benefit most from current (and foreseen) developments in computer technology.

- **GAMESS-UK : Ab-initio quantum chemistry (Daresbury Laboratory);**
- **ADF Density Functional treatment of molecules and polymers (Amsterdam);**
- **VAMP Semi-Empirical Molecular Orbital theory for molecules (T. Clark, Erlangen)**

– Representative members of the European chemical industry.

- **ICI (Wilton, UK), Dr John Kendrick**
- **Zeneca, (Blackley, UK), Dr John Charlton**

– The Commercial Software House, Oxford Molecular Ltd (OML, Oxford).

Energies and geometries of medium to large ground-state molecules at Hartree-Fock Level:

- **Integrals recomputed or held in core rather than stored on disk**
- **Memory (scales as n2, n=no. of basis functions), leads to limitations on workstations (approx. 2000 basis functions on 128 Mbyte machines)**
- **Cost of Fock Matrix build scales as n4 (small systems) to ca n2.5 asymptotically. Cost of matrix operations within SCF sheme n³ (matrix diagonalisation, MMO etc.)**
- **Integral generation highly parallel (DLB); O(n3) operations potential bottleneck on MPP machines**
- **O(n) techniques for integral evaluation; matrix OPs the bottleneck.**

Applications of GA Tools within GAMESS-UK

- **• SCF and DFT**
	- **Distributed Data: Random access to blocks of F/D**
	- **Replicated data: Caching of I/O; restart & checkpoint files**
	- **Linear algebra (via PeIGS)**
- **• SCF second derivatives– Distribution of <vvoo> and <vovo> integrals**
- **• MP2 gradients**
	- **Distribution of <vvoo> and <vovo> integrals**
	- **Simplification of transpositions**
- **• Coupled-Cluster – Sharing of amplitudes and integrals**

GAMESS-UK - Functionality and Benchmarking

Parallel Functionality

• SCF Energy and Gradient

- **Replicated Data model**
- **Dynamic Load Balancing**
- **• MP2 Energy and Gradient**
	- **Global memory storage**
- **• SCF Second Derivatives**

Benchmarking Platforms

•**IBM SP-2**

- **64/128 Mb node memory, local disc**
- **DL (16 nodes), Cornell (512 nodes)**
- **SG PowerChallengeArray**
	- **16 nodes share 2-4 Gb memory**
	- **EPCA (64 nodes)**
- **Parsytec GC**
	- **64 Mb node memory, two PC601 procs./node**
	- **Paderborn (64 nodes)**
- **Workstation Clusters**
	- **HP9000 series, IBM RS6000**

GA vs MPI-based Performance of GAMESS-UK

GAMESS-UK: Direct SCF Performance (Cray T3D)

GAMESS-UK: Direct SCF Performance (Cray T3E)

Cray T3E 128-128 / 375 MHz

 Konrad-Zuse-Centrum fuer Informationstechnik, Berlin

New Features:

1. Parallel Linear Algebra: PeiGS etc.

2. GA tools to cache I/O

Large-Scale Correlated Calculations

"Compact" Systems "Extended" Systems

- **• Moderately sized molecule/ large basis set.**
- **• Dense integrals and excitation amplitudes.**
- **• Treat with RI-MP2 or more traditional approaches.**

- **• Large molecule/moderate basis.**
- **• Localizable MOs, sparse integrals & amplitudes.**
- **• Use AO-based approach to take advantage of sparsity.**

MP2 Gradient Algorithms

Serial

Parallel

- **• Conventional**
	- **integrals written to disc**
	- **integrals read back, transformed, written out, re-sorted, and so on**
	- **I/O demands are heavy**
- **• Direct/Semi-direct (Frisch, Head-Gordon and Pople, Haase and Ahlrichs)**
	- **replace all/some I/O with batched integral recomputation**
- **• Poor I/O-to-compute performance of MPPs - direct approach**
- **• Current MPPs have large global memories**
- **• Store subset of the MO integrals**
	- **reduce number of integral recomputations**
	- **increase communication overhead**
- **• Subset includes VOVO, VVOO, VOOO, OOOO**
	- **VVVO-class too large**
	- **compute VVVO-terms separate step**

GAMESS-UK: Gaussian DFT Module

- **Developed under auspices of CCP1 as modular code**
	- **Variety of functionals (LDA, BLYP, B3LYP etc)**
- **Exchange Correlation Module:**
	- **Numerical grid-based technology. Radial (Euler Maclaurin) and Angular parts (Gauss Legendre, Lebedev, SG1 grid etc.). Weight schemes (Becke, Frisch etc.)**
	- **Extensive use of screening (density matrix and points); scaling O(N1.5) in series of water clusters**
- **Coulomb Module:**
	- **Dunlap auxiliary gaussian fitting method (screening on AO shells)**
	- **Multipole developments (stepping stone toward CMM/FMM)**
		- **Coulomb problem split into bi- and mono-electronic region**
		- **Shell-associated auxiliary gaussian used to compute shell penetration factor (code from CRYSTAL)**

IBM Power2 RS/6000 33 hours 48 minutes

GAMESS-UK: Single Processor BenchMarks

The GAMESS-UK Benchmark: Total CPU time (user and system) Elapsed time (minutes) and Efficiency (%) for Calculations 1 - 12

Daresbury Laboratory

Performance of PC's in Computational Chemistry: GAMESS-UK Benchmarks

Machines Under Evaluation - H/W and O/S

Pentium 133 (FreeBSD)

Intel Pentium Motherboard "TUCSON" TC430HX Intel Pentium 133Mhz512 Kb L2 cache64Mb EDO RAMAdaptec 2940 (SCSI-2 Narrow) SCSI Adapter IBM DORS-32160 2Gb diskFreeBSD 2.2.2f2c + pgcc 2.7.2p Fortran Compiler flags: -O6 -frisc -mno-fp-ret-in-387

Pentium-Pro (FreeBSD)

Intel Pentium Pro MotherBoard "VENUS" VS440FXIntel PentiumPro 200Mhz256Kb Internal L2 cache64Mb EDO RAMAdaptec 2940 (SCSI-2 Narrow) SCSI Adapter IBM DORS-32160 2Gb diskFreeBSD 2.2.1f2c + pgcc 2.7.2p Fortran Compiler flags: -O6 -frisc -mno-fp-ret-in-3872 Pentium 166 (FreeBSD)

Amptron Pentium Motherboard Intel Pentium 166Mhz512 Kb L2 cache64Mb RAMAdaptec 2940 (SCSI-2 Narrow) SCSI Adapter IBM DORS-32160 2Gb disk

FreeBSD 2.1.5f2c + pgcc 2.7.2p Fortran Compiler flags: -O6 -frisc -mno-fp-ret-in-387

Pentium Pro (Linux and Windows NT)

Intel Pentium Pro MotherBoard "VENUS" VS440FXIntel PentiumPro 200Mhz256Kb Internal L2 cache128Mb EDO RAMNCR (SCSI-2 Narrow) SCSI Adapter SEAGATE Hawk ST15230N 4Gb disk

Linux RedHat 4.1f2c + gcc 2.7.2.1 Fortran Compiler flags: -O

Windows NT 4.0DIGITAL Visual Fortran (Beta Release) Microsoft Visual C++ 4.2Fortran Compiler flags: -optimize:5 -fpe:3 -debug:none

Performance of PC's in Computational Chemistry: GAMESS-UK Implementation Notes

- **GAMESS-UK uses fortran functions that return integers packed in a 64 bit double •precision numbers; this generates floating point exceptions on the Intel Pentium processors.**
- **This problem is present under all operating systems used: FreeBSD, Linux and Windows NT 4.0. These exceptions are probably wasting some CPU time under each of the environments.•**
- **Some benefit found under FreeBSD from using the Pentium GNU cc compiler and an • assembler coded math library that directly uses the Pentium floating point instructions to calculate sqrt, log, exp., trig. functions etc. (10% improvement in CPU time). This library is part of the operating system.**
- **The different timings between Linux and FreeBSD suggests that Linux is probably • lacking the assembler code optimized math library.**
- **Performance difference between FreeBSD and WinNT PentiumPro probably arises •from the better compiler on the latter. Note that pgcc has a "-mcpu=pentiumpro" option that may be of help in further optimizing on PentiumPro processors. We have still to test this option.**

Performance of PC's in Computational Chemistry: GAMESS-UK Benchmark

Direct-SCF calculation on Cytosine (6-31G basis, 82 CGTOs). All the timings are obtained as an average of 3 runs from the csh time.

DEC AXP 500 / 333

Performance of PC's in Computational Chemistry: Machine Costs

Approximate Schemes for the Coulomb Potential

Conventional 2-electron integral scheme:

^Fµν**= F**µν **+ P**λσ**<** χµχν **| 1/r |** χλχσ **>**

Formal scaling is O(N4) for small systems but O(N2) for large systems, if summation is restricted to χµχν **and** χλχσ **which satisfy an overlap test •**

<χµ|χν> **> tol**

In practice screening tests are performed at the shell level by replacing χµ **by an s function with the smallest exponent in the shell.**

Approximate schemes are based on alternative representations of the density Pλσχλχσ **•**

Fitted scheme: Represent total density ΣΣ**P**λσχλχσ **in an auxillary basis**

Multipole scheme: Partition Pλσχλχσ **based on overlap of** χλ **with** χµχν and **expand non-overlapping part as a multipolar expansion.**

Coulomb Fitting Scheme

Expand total density using an auxilliary basis •

$$
\sum \sum P_{\lambda\sigma}\chi_{\lambda}\chi_{\sigma} \approx \sum c_r \chi_r
$$

Typically, Nr[≈] **3*N. Fitting Coefficients determined variationally by Dunlap scheme, •**

$$
c_{q=}\sum_{r}V_{qr}^{-1}\left\{\sum p_{\nu\mu}(\chi_{\mu}\chi_{\nu}||\chi_{r})\cdot\alpha\int \chi(r)\ dr\right\}
$$

- **Requires inversion of two-centre coulomb integrals of order Nr, O(N3)** $V_{qr} = (q||r)$ **•**
- **Coulomb matrix built using O(N2) 3-centre coulomb integrals •**

$$
J_{\mu\nu}\!\!=\!\sum_{r}\!\!c_{r}\!\!\left(\chi_{r}\right)\!\!\left|\chi_{\mu}\chi_{\nu}\right)
$$

Multipole Approximations

- **Determine shells (c) of basis functions** $χ_λ$ **that do not penetrate overlap** $χ_μχ_ν$ **•**
- **Construct multipole moments of the overlap distributions** $χλλσ$ **for all basis functions** σ **about the site of shell c•**

 $\int \chi_{\lambda} \chi_{\sigma} X_{lm}(r-r_c) dr$

Contract with density matrix to form multipoles of the Mulliken charge distribution associated with shell c•

$$
\eta(\rho_c, r_c) = \sum \sum P_{\lambda\sigma} \int \chi_{\lambda} \chi_{\sigma} X_{lm}(r-r_c) dr
$$

Combined with the multipole field integrals •

$$
\mathbf{M}_{\mathsf{Im}\mu\nu} = \int \chi_{\mu} \chi_{\nu} \mathbf{Z}_{\mathsf{Im}}(\mathbf{r}\text{-}\mathbf{r}_{\mathbf{c}}) d\mathbf{r}
$$

to generate a contribution to the fock matrix

$$
J_{\mu\nu}=\sum\sum\eta(\rho_c,r_c)\ M_{Im\mu\nu}
$$

- **Fitting schemes Dunlap scheme cost effective for "small" basis sets, eventually dominated by matrix inversion. •**
- **Multipole Schemes for n > 1000 basis functions. •**
- **Two-electron integrals formally O(N), but require efficient • implementation of screening tests O(N2). (currently dominant after ca 1200 basis functions).**
- **Multipole integrals are O(N2) optimise by contracting multipoles from shells on a given centre: •**

heirarchical schemes (CMM, FMM)

SUMMARY

- **•Background issues in HPC and computational chemistry.**
- **• Provided an outline of Grand Challenge and Throughput Requirements:**

NWChem and Grand Challenge Applications:

- **Full-featured electronic structure & MD code**
- **Distributed data Parallel implementations**

GAMESS-UK and Throughput Applications

- **Present capabilities scalability within a replicated data approach (T3D / T3E performance figures)**
- **SCF, MP2-gradients and DFT performance on T3E.**
- **Integral Bottleneck and O(N) developments Multipole approx.**
- **• Cost-effectiveness of MPPs**
	- **Unix workstations and PC's**
	- **Balance lies in favour of GC applications, and not throughput ...**